

Prediction of gene expression under environmental stress in *Orzya sativa*

Ketan Jog¹, Christina Azodi², Dr. Shin-Han Shiu² Columbia University¹, Michigan State University²

Background

When a plant is exposed to **environmental stresses** like drought or cold, it triggers the production of regulatory proteins, called **transcription factors**

These regulators attach to **binding sites** on/near genes, which leads the gene to be transcribed into mRNA. This mRNA gets translated into proteins that help the plant combat the stress. This is called **gene expression**

Genes without stress induced transcription factor binding sites will be less responsive to that stress

Objectives

We build a deep learning model that **predicts** whether a gene is expressed in **response** to cold, drought or salt stress in both root and shoot tissue, using rice data

We interpret the trained model to **discover** putative novel transcription factor **binding sites**

Method

- → Raw **RNA-Seq** reads were downloaded from the NCBI Sequence Read Archive (SRA)
- → Reads were **mapped** to the rice genome
- → Levels of **expression** were calculated
- → Genes with a **log fold change** in **expression** between the control and each stress/tissue > 1 were considered up-regulated.

3000-bp of DNA sequence (1kb downstream and 0.5kb upstream from both ends of a gene) for each gene was one-hot encoded into a **binary matrix**

The Big Picture

Results: Model Performance

We experimented to find the optimum learning rate (LR):

We found that a learning rate of **1e-04** tended to produce the best results.

We experimented to find optimum initial parameters (i.e. kernels) and input dataset:

In another set of experiments, the dataset was **filtered** to improve loss and train time by removing genes **non-responsive** under all 6 conditions

All kernels were initialized by:
(1) **randomly** drawing from a uniform Xavier distribution (2) from **known** transcription factor **binding sites** (TFBMs) from A. thaliana

LR =	Random	Initialised		Initialised
16-04			· i illered	' i litereu
AU-PRC	0.242	0.78	0.721	0.774
AU-ROC	0.509	0.872	0.858	0.869
	1e-04	1e-04 Random AU-PRC 0.242	1e-04 Random Initialised AU-PRC 0.242 0.78	LR = 1e-04 Random Initialised Random + Filtered AU-PRC 0.242 0.78 0.721 AU-ROC 0.509 0.872 0.858

Results: Finding novel motifs

We extracted the **kernels** from the **CNN** layers, to see how much they changed after training:

Some known A. thaliana TFBM kernels were conserved after training on *O. sativa*, while others changed substantially.

Takeaways

We were able to develop model that predicted environmental stress response for *O sativa*

We were able to use this model to discover novel putative binding site motifs in *O sativa*, as well as observe binding sites conserved from *A thaliana*

Acknowledgements

- NSF ACRES REU OAC1560168
- Shiu Lab
- Our collaborators Yuning Hao and Yuying Xie in CMSE.

